bwin必赢唯一官方网站
博学笃行 止于至善
导航菜单
2021.10.21,李亚纯,教授,上海交通大学,偏微分方程系列报告
发布时间: 2021-10-18 13:55 作者: 点击: 600

偏微分方程系列报告

报告题目: Convergence rates in zero-relaxation limits for Euler-Maxwell and Euler-Poisson systems

报告人:   李亚纯 教授 (上海交通大学)

报告摘要:

It was proved that Euler-Maxwell systems converge globally-in-time to drift-diffusion systems in a slow time scaling, as relaxation times go to zero. The convergence was established to the Cauchy problem with smooth initial data being sufficiently close to constant equilibrium states. In this talk, we establish error estimates between periodic smooth solutions of Euler-Maxwell systems and those of drift-diffusion systems. We also establish similar error estimates for Euler-Poisson systems in place of Euler-Maxwell systems. The proof of these results uses stream function techniques together with energy estimates. This is a joint work with Yue-Jun Peng and Liang Zhao.

报告人简介:李亚纯,上海交通大学数学科学学院教授。1994年于复旦大学获理学博士学位,主要从事非线性偏微分方程的理论研究工作,在可压缩Navier-Stokes方程组,(相对论)Euler方程组,退化双曲抛物方程组的适定性和奇异性方面取得了一系列重要进展。目前已在国际学术期刊上发表高水平学术论文60余篇,其中包括Arch. Ration. Mech. Anal., Comm. Math. Phys., SIAM J. Math. Anal., J. Diff. Eq.本领域权威杂志。 多次主持国家自然科学基金重点项目和面上项目,获上海市自然科学一等奖,教育部新世纪优秀人才等。

报告时间: 2021.10.21(周四) 下午 3:00-4:00

报告地点: 腾讯会议 会议 ID844 174 523 会议密码:1021