报告题目:Adding potentials to superintegrable systems with symmetry on 3 dimensional conformally flat space
报告人:黄晴教授 西北大学
报告摘要:
In this talk, we consider natural Hamiltonians associated with 3 dimensional conformally flat spaces, where the kinetic energies possess 2, 3 and 4 dimensional isometry algebras and the potential functions are added in the presence of symmetry. Separable potentials in the 3 dimensional space reduce to 3 or 4 parameter potentials for Darboux-Koenigs Hamiltonians. Other 3D coordinate systems reveal connections between Darboux-Koenigs and other well known super-integrable Hamiltonians, such as the Kepler problem and isotropic oscillator.
时间:2021年7月2日(星期五)上午8:30 — 9:30
腾讯会议:167 117 003
报告人简介:
黄晴,教授、博士生导师。主要从事数学物理、可积系统的研究,在SIGMA、Journal of Mathematical Physics等期刊上发表多篇论文。主持国家自然科学基金青年项目与面上项目,曾获2010年陕西省科学技术奖一等奖。